skip to main content


Search for: All records

Creators/Authors contains: "Reny, Philip J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stable matchings in school choice needn’t be Pareto efficient and can leave thousands of students worse off than necessary. Call a matching μ priority-neutral if no matching can make any student whose priority is violated by μ better off without violating the priority of some student who is made worse off. Call a matching priority-efficient if it is priority-neutral and Pareto efficient. We show that there is a unique priority-efficient matching and that it dominates every priority-neutral matching and every stable matching. Moreover, truth-telling is a maxmin optimal strategy for every student in the mechanism that selects the priority-efficient matching. (JEL C78, I21, I28) 
    more » « less
  2. We review the discontinuous games literature, with a sharp focus on conditions that ensure the existence of pure and mixed strategy Nash equilibria in strategic form games and of Bayes-Nash equilibria in Bayesian games. 
    more » « less
  3. We extend Kreps and Wilson's concept of sequential equilibrium to games with infinite sets of signals and actions. A strategy profile is a conditional ε ‐equilibrium if, for any of a player's positive probability signal events, his conditional expected utility is within ε of the best that he can achieve by deviating. With topologies on action sets, a conditional ε ‐equilibrium is full if strategies give every open set of actions positive probability. Such full conditional ε ‐equilibria need not be subgame perfect, so we consider a non‐topological approach. Perfect conditional ε ‐equilibria are defined by testing conditional ε ‐rationality along nets of small perturbations of the players' strategies and of nature's probability function that, for any action and for almost any state, make this action and state eventually (in the net) always have positive probability. Every perfect conditional ε ‐equilibrium is a subgame perfect ε ‐equilibrium, and, in finite games, limits of perfect conditional ε ‐equilibria as ε  → 0 are sequential equilibrium strategy profiles. But limit strategies need not exist in infinite games so we consider instead the limit distributions over outcomes. We call such outcome distributions perfect conditional equilibrium distributions and establish their existence for a large class of regular projective games. Nature's perturbations can produce equilibria that seem unintuitive and so we augment the game with a net of permissible perturbations. 
    more » « less